Reading Time: An initial 2 minutes to view BOTH sections

MATHEMATICS METHODS : UNITS 3 & 4, 2023 Test 1 – Differentiation Rules and Applications (10%) 3.1.7, 3.1.8, 3.1.10 – 3.1.16, 3.2.1 – 3.2.3						RG
Time Allowed First Name		First Name	Surname		Marks	
30 minutes					27 marks	
Circle your Teacher's Name:			Mrs Alvaro	Ms Chua	Mrs Fraser-Jones	
			Mrs Greenaway	Mr Luzuk	Mrs Murray	
			Ms Narendranathan	Mr Tanday		
Assessment Conditions: (N.B. Sufficient working out must be shown to gain full marks)						
 Calculators: Not Allow 		Not Allow	ved			
*	Formula She	et: Provideo	Provided			
*	Notes: Not Allowed					

PART A – CALCULATOR FREE

QUESTION 1

(4 marks)

Find the derivative of $y = (3x^2 - 2x)^3$, clearly demonstrating the use of the chain rule. DO NOT SIMPLIFY.

QUESTION 2

(2, 2 – 4 marks)

Find the derivative of the following with respect to x (DO NOT SIMPLIFY):

a) $y = x^3(3x-5)^4$

b)
$$f(x) = \pi^2 + \sqrt{x^2 - 3x}$$

QUESTION 3

Find the gradient of the curve with the equation $y = \frac{2x^2 - 1}{x^2 + 2}$ where x = 2.

QUESTION 4

(1, 3 – 4 marks)

For
$$y = \frac{3x^2 + 8}{2x}$$
:

a) Find $\frac{dy}{dx}$ (DO NOT SIMPLIFY)

b) State the approximate increase in y (in terms of p) as x increases from 2 to 2+p when p is small.

The graph of y = f(x) is as shown below. On the axes provided, sketch the graph of y = f'(x)

A variable *z* is defined as the sum of the squares of two other variables *x* and *y*. That is, $z = x^2 + y^2$. Furthermore x + y = 4. Find the values of *x* and *y* such that *z* takes its minimum value.

QUESTION 7

(1, 2, 2 – 5 marks)

Find the following:

a)
$$\int x^2 - 3x + 2dx$$

b)
$$\int x - x^{\frac{1}{2}} dx$$

c)
$$\int x^{2a+2} dx$$